Regressive lesions - 2/2016

1 - Fatty liver
2 - Haemochromatosis (liver)
3 - Caseous necrosis (tbc)
4 - Enzymatic necrosis of pancreatic fat tissue (Balser type)
5 - Apoptosis (viral hepatitis)

1 - Fatty liver

Fatty change is often seen in the liver because it is the major organ involved in fat metabolism, but it also occurs in heart, muscle, and kidney. In normal circumstances no lipids are histologically demonstrable within hepatocytes. Excessive accumulation of lipids in hepatocytes may arise from:

- Increase in mobilization of fatty acids from adipose tissue
- Increase in intensity of hepatic lipogenesis
- Decrease in fatty acids utilization (oxidation)
- Reduction in secretion of lipoproteins

Schematic diagram of the possible mechanisms leading to accumulation of triglycerides in fatty liver. Defects in any of the steps of uptake, catabolism, or secretion can result in lipid accumulation.

NAFLD (non-alcoholic fatty liver disease) and NASH

In industrialized nations, by far the most common cause of significant fatty change in the liver (fatty liver) is alcohol abuse:

- NAFLD (non-alcoholic fatty liver disease) first described in 1980
- Liver disease develops in individuals who do not drink alcohol
 2 groups:
 - Steatosis (fatty liver)
 - NASH - non alcoholic steatohepatitis

1 - Fatty liver (Steatosis hepatis)

The causes of steatosis include:
- drugs (e.g. corticosteroids, salicylates, tetracyclines)
- toxins (e.g. mushroom- Amanita phalloides - toadstool)
- protein malnutrition,
- diabetes mellitus,
- obesity,
- Anoxia,
- Insulin resistance
- Dyslipidemia (hypertriglyceridemia, low high density lipoprotein cholesterol, high low density lipoprotein cholesterol)

1 - Fatty liver

This liver is slightly enlarged and has a pale yellow appearance, seen both on the capsule and cut surface.
1 - Fatty liver

MI: microscopically, hepatic fatty change can be subdivided into micro- and macrovesicular ones. The former is observed for example in Reye’s syndrome. Macrovesicular we can see in alcohol abuse, obesity, acute mushrooms poisoning. Macrovesicular (large droplet) steatosis hepatocytes show large fat globule in central area of cytoplasm. They are frequently enlarged with nucleus pushed towards stretched fat. Because of presence of large, apparently empty round cells with peripheral nuclei, at first sight fatty liver microscopically resembles adipose tissue. In fact lipids are absent on presented slides, being dissolved out by routine tissue processing.

Reye syndrome

- Fatty change in the liver and encephalopathy
- Affects children younger than 4 years of age
- The pathogenesis: loss of mitochondrial function
- Is associated with aspirin administration during viral illnesses
- MI: changes within hepatocytes and astrocytes
- Skeletal muscle, kidneys and heart may reveal mitochondrial alteration
- The most severe forms are fatal

2 - Haemochromatosis (liver)

Hemochromatosis is a severe iron-storage disorder arising from abnormal increase in intestinal iron absorption. Inborn or acquired damage to the barrier results in higher intestinal iron absorption which surpasses the amount necessary for the synthesis of hemo.

Hereditary hemochromatosis – 4 genetic variants

The most common – an autosomal recessive disease caused by mutation in HFE gene.

2 most common mutations – C282Y – 80% of hemochromatosis patients are homozygous for the C282Y.

10% of hereditary hemochromatosis patients are compound heterozygotes for the C282Y/H63D or homozygotes for H63D mutation.

The remainder comprise variants of hereditary hemochromatosis that do not involve the HFE gene.

Acquired forms are known as secondary iron overload: multiple transfusion, ineffective erythropoiesis (sideroblastic anemia, beta-thalassemia) and increase iron intake (Bantu siderosis).

Clinically the disease is mainly characterized by:

- hepatic cirrhosis
- diabetes mellitus due to the damage of beta cells
- gray to bronze pigmentation due to overproduction of ACTH and MSH secondary to adrenal gland insufficiency
- heart failure

Cirrhosis of the liver

MI: cirrhotic or non cirrhotic liver with numerous hepatocytes loaded with golden brown haemosiderin granules. This deposits we can also see in fibrous tissues, Kupffer cells or bile duct epithelium.

Hemosiderin granules in liver cells. A, H&E section showing golden-brown, finely granular pigment. B, Prussian blue reaction, specific for iron.
Necrosis

- The type of cell death that is associated with loss of membrane integrity and leakage of cellular contents
- The leaked cellular contents elicit a local host reaction (inflammation), that attempts to eliminate the dead cells
- Patterns of tissue necrosis: coagulative and liquefactive

Necrosis

- Coagulative: a form of tissue necrosis in which the cells are dead but the tissue architecture is preserved for several days;
 - is characteristic of infarcts (ischemic necrosis) in solid organs;
 - similarity to coagulation of proteins that occurs upon heating
- Liquefactive: dissolution of the necrotic cells;
 - Seen in
 1. bacterial infections-microbes stimulate leukocytes to digest (liquefy) the tissue
 2. brain strokes

Chronic hepatitis.

- Spotty necrosis is a term used to describe necrosis of minute clusters of hepatocytes, usually in association with lymphocytes. Necrosis involving larger groups of hepatocytes within a lobule may be referred to as focal necrosis. These terms describe a continuum of lobular injury

Chronic hepatitis.

- Spotty necrosis
- The leaked cellular contents elicit a local host reaction (inflammation)

Patterns of Hepatic Injury

- Necrosis and Apoptosis
 - **Distribution:**
 1. Centrilobular – most common; immediately around terminal hepatic vein
 2. Mid-zonal and perportal – rare
 - **Degree of Involvement:**
 1. Focal or spotty – limited to scattered cells within hepatic lobules
 2. Interface hepatitis – between periportal parenchyma & inflamed portal tracts
 3. Bridging necrosis – span adjacent lobules
 4. Submassive necrosis – entire lobules
 5. Massive – most of the liver
- www.slideshare.net/specialclass/liver-1

3 - Caseous necrosis (tbc)

It constitutes a distinctive subtype of coagulative necrosis. Adjective „caseous“ refers to the gross appearance of necrosis. Changed areas are namely fragile, whitish-yellowish, similar to white cheese (Lat. „caseus“ = cheese)

C.n. appears in non- or poorly vascularized, cell-rich tissues which are subdued to the effect of endogenous toxins.

These conditions are fulfilled only by pathologic tissues: tuberculous and luetic granulomas and malignant neoplasms.

MA: necrotic masses resemble white-yellowish cheese, are matt and brittle

A tuberculous lung with a large area of caseous necrosis. The caseous debris is yellow-white and cheesy.
Caseous necrosis (tbc)

MI: focus of caseous necrosis appears as amorphous, granular debris (without even any shadow of underlying structure of organ) enclosed within a distinctive inflammatory border known as granulomatous reaction.

Characteristic tubercle at low magnification (A) and in detail (B) illustrates central caseation surrounded by epithelioid and multinucleated giant cells (Langhans cells - derive from numerous fused macrophages - their nuclei form peripheral circle or horse-shoe) and lymphocytes.

Enzymatic necrosis of pancreatic fat tissue (Balser type) – Balser’s fat necrosis

Balse’s fat necrosis is a hallmark of severe form of acute pancreatitis which is characterized by acinar cell necrosis and foci of haemorrhage.

Acute necrotising/haemorrhagic pancreatitis is most commonly associated with:
- alcohol abuse and cholelithiasis. Less common factors include:
- trauma, abdominal surgery, metabolic abnormalities.

- Damage of acinar cells leads to activation of pancreatic enzymes, especially lipase, trypsin, chymotrypsin.
- Action of lipase leads to injury of adipose tissue located in and around affected pancreas.
- The enzyme hydrolyses triglycerides (from fat tissue) with release of fatty acids and glycerol. The latter is absorbed into bloodstream but fatty acids bind calcium and magnesium ions to form insoluble soaps (fat saponification). Active lipase circulating with blood may cause extrapancreatic and extraabdominal fat necrosis as well.

MACROSCOPICALLY:

The resulted foci (of insoluble soaps) are chalky white, well discrete on yellow background of unchanged adipose tissue.

Foci of fat necrosis (Balser’s fat necrosis) with saponification in the mesentery. The areas of white chalky deposits represent calcium soap formation at sites of lipid breakdown.

4 - Enzymatic necrosis of pancreatic fat tissue (Balser type) – Balser’s fat necrosis

Microscopical examination of adipose tissue affected with Balser’s necrosis reveals “ghosty” adipocytes with blurred cell membranes and bluish, granular cytoplasm. Additionally amorphous basophilic extracellular depositions of calcium can be observed.

5 - Apoptosis (viral hepatitis)

Apoptosis means genetically programmed, spontaneous death of cells (suicide of cells).

The term “apoptosis” derives from a Greek word which means “the falling down of leaves”. They become detached one after another, never all simultaneously. The same is true for apoptosis and it is a difference with necrosis which usually involves the majority of cells of a given area.

Apoptosis fails to secrete any mediators – there is no inflammatory reaction (on the contrary to necrosis). Necrosis almost always induced the inflammation which leads to phagocytosis of necrotic mass.

Apoptosis is physiological but also results from pathogen for example viruses.
A cell undergoing apoptosis is variably referred to as “apoptotic body,” “acidophil body,” or “Councilman body.”

- Apoptotic body (arrow).
- Note the condensation and dark staining of the cytoplasm and absence of nucleus.

Liver injury

- Liver injury can be caused by different stimuli such as alcohol intake, viral infection, cholestasis, steatosis, drug abuse, and autoimmunity.
- In the damaged liver, cell death modes include apoptosis and necrosis.
- Apoptosis is an early, chronic, and temperate response subsequent to injury induction, whereas necrosis is an acute and severe reply.

Hepatic apoptosis

- Apoptosis is a prominent feature of liver diseases. Causative factors such as alcohol, viruses, toxic bile acids, fatty acids, drugs, and immune response, can induce apoptotic cell death via membrane receptors and intracellular stress.
- Apoptotic signaling network, including membrane death receptor-mediated cascade, reactive oxygen species (ROS) generation, endoplasmic reticulum (ER) stress, lysosomal permeabilization; and mitochondrial dysfunction, is intermixed each other, but one mechanism may dominate at a particular stage.
- Mechanisms of hepatic apoptosis are complicated by multiple signaling pathways.
- The acute liver injury involves much necrosis, but the chronic infection of HCV and HBV exhibits abundant apoptosis. Only human and chimpanzee hepatocytes are naturally able to support HCV entry.

Model of HCV apoptotic signaling pathways

- HCV induces infected hepatocytes to apoptosis. Death receptor-mediated extrinsic pathway is enforced by mitochondrial amplification loop. Oxidative and ER stress with apoptosis are also shown, which reflect a potential interaction between the host cell response and apoptosis.

5 - Apoptosis (viral hepatitis)

Apoptotic hepatocytes are typically for viral hepatitis. They are called acidophilic bodies (Councilman’s bodies).

Morphologically apoptosis is represented by a sign of necrosis in the single cells.

In single hepatocytes we can find the signs of (coagulative) necrosis:
- pyknosis – condensation of chromatin
- karyorhexis – fragmentation of nuclei with margination of chromatin followed by its encapsulation and formation apoptotic bodies
- in the end cells disappear

Apoptotic hepatocytes are deeply pink and their nuclei are condensed.

- Hepatocytes have hypereosinophilic cytoplasm and are surrounded by a clear halo resulting from fragmentation and contraction of the dying hepatocyte.
Apoptosis of epidermal cells in an immune-mediated reaction. The apoptotic cells are visible in the epidermis with intensely eosinophilic cytoplasm and small, dense nuclei. H&E stain.